Machine Learning Based Profile Driven Scheduling Algorithm

نویسندگان

  • S. Padmavathi
  • K. Balakrishnan
چکیده

Clusters of commodity servers are increasingly the platform of choice for running computationally and IO intensive jobs in a variety of industries. It is expected that using clusters will reduce the average job response time. But improper submission of jobs to clusters may lead to two problems, first it leads to blocking of jobs (waiting for results from other jobs) second it leads to disturbing other jobs (i.e. other jobs may be blocked due to submission). Effective utilization of the resources in clusters can help to balance the load and avoid situations like slow run of systems. This paper addresses the principle of effective utilization of cluster resources by Machine Learning based profile driven scheduling. It avoids the above problems by allocating jobs to resources of cluster based on the SVM prediction profiling results. Some of the machines in the cluster run the IO bound jobs effectively with minimum waiting time and with the minimum execution time, while in some other machines run the CPU bound jobs effectively with minimum waiting time and with the minimum execution time. The system statistics like CPU utilization time, Memory space utilized, User and System time utilization are used as the parameters for Profiling. Job dependency analysis is used to prevent dependent jobs to keep blocking and disturbing other jobs. This paper uses the Resource profiling results based on machine learning prediction and Offline Job profiling to perform job allocation onto the resources of cluster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect

This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...

متن کامل

Improved teaching–learning-based and JAYA optimization algorithms for solving flexible flow shop scheduling problems

Flexible flow shop (or a hybrid flow shop) scheduling problem is an extension of classical flow shop scheduling problem. In a simple flow shop configuration, a job having ‘g’ operations is performed on ‘g’ operation centres (stages) with each stage having only one machine. If any stage contains more than one machine for providing alternate processing facility, then the problem...

متن کامل

Debt Collection Industry: Machine Learning Approach

Businesses are increasingly interested in how big data, artificial intelligence, machine learning, and predictive analytics can be used to increase revenue, lower costs, and improve their business processes. In this paper, we describe how we have developed a data-driven machine learning method to optimize the collection process for a debt collection agency. Precisely speaking, we create a frame...

متن کامل

Fuzzy Multi-objective Permutation Flow Shop Scheduling Problem with Fuzzy Processing Times under Learning and Aging Effects

In industries machine maintenance is used in order to avoid untimely machine fails as well as to improve production effectiveness. This research regards a permutation flow shop scheduling problem with aging and learning effects considering maintenance process. In this study, it is assumed that each machine may be subject to at most one maintenance activity during the planning horizon. The objec...

متن کامل

Solving a New Multi-objective Unrelated Parallel Machines Scheduling Problem by Hybrid Teaching-learning Based Optimization

This paper considers a scheduling problem of a set of independent jobs on unrelated parallel machines (UPMs) that minimizesthe maximum completion time (i.e., makespan or ), maximum earliness ( ), and maximum tardiness ( ) simultaneously. Jobs have non-identical due dates, sequence-dependent setup times and machine-dependentprocessing times. A multi-objective mixed-integer linear programmi...

متن کامل

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013